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Abstract. The derivation of series expansions for the mean size of finite clusters in the Ising 
model is described briefly. From an analysis of low temperature series it is concluded that 
for a two-dimensional lattice in zero magnetic field the mean size probably diverges at the 
king critical temperature, T,, as (Tc- 7‘)-’, with 9 = 1.91*0.01. It appears therefore that 
t9 > y ’ =  1.75 the corresponding Ising susceptibility exponent. For a three-dimensional 
lattice it is tentatively concluded that the mean size diverges at some temperature r* < T,. 

1. Introduction 

In a recent paper Coniglio (1975) has calculated the percolation probability and mean 
cluster size for a mixture of ‘up’ and ‘down’ spins on a simple Bethe lattice with 
nearest-neighbour ferromagnetic interactions of the Ising type. The corresponding 
solution for the percolation problem for a random mixture on a Bethe lattice was 
obtained by Fisher and Essam (1961); the investigation of Coniglio extends their results 
to a mixture of sites whose distribution is not random but is instead energetically 
determined. The more general problem of percolation in a three-dimensional Ising 
system has been studied by Muller-Krumbhaar (1974) using Monte Carlo techniques. 
In this paper we investigate the mean cluster size for the Ising model in two and three 
dimensions by series methods and draw some tentative conclusions. 

The existence of a percolation threshold in many-body systems is an important 
phenomenon in the theory of dilute ferromagnets and inhomogeneous conductors 
(Kasteleyn and Fortuin 1969, Essam 1973, Kirkpatrick 1973, Essam and Fisher 1963, 
Grif€iths and Lebowitz 1968). A study of cluster size in the Ising model is a first step 
towards a proper treatment of the percolation problem when interactions cannot be 
neglected. The interest in such a study consists not only in generalizing the percolation 
problem to such systems but in the investigation of the connection between phase 
transitions and percolation. 

2. Derivation of series expansions 

The elementary derivation of series expansions for random mixtures has been 
described by Sykes and Glen (1976) and Sykes et a1 (1976a, b, c), to be referred to as 
I-IV; the perimeter method there used is not immediately applicable to the present 
problem and we have had recourse to the alternative direct derivation, described in the 
specialized articles of Sykes and Essam (1964) and Essam and Sykes (1966), based on a 
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knowledge of the embeddings of multicomponent graphs. We have combined this 
technique with the direct configurational method for series development in the king 
model described by Sykes er ul (1965, 1973a, b, c, d, e, 1975a, b, c, to be referred to as 
I*-IX*) and by Domb (1974). 

Following I*-IX* we define standard expansion variables 

U = exp(-4J/k;r) 

p = exp(-2mH/kT). 

At low temperatures, or in a high applied magnetic field, there exists an ordered state 
(for a ferromagnet). Small perturbations of this ordered state correspond to the 
occurrence of overturned spins, the probability of each perturbation being the appro- 
priately normalized Boltzmann factor (I*, § 2 and II*, § 1). 

For a lattice of N sites the number of overturned spins, NI,  (which we select as the 
primary species to be studied (Essam and Sykes 1966)) determines the concentration P 
defined by 

N,=PN (2.2) 

I=1-2@.  (2.3) 

and this is simply related to the magnetization I through 

The concentration is the expectation that a randomly chosen site will be occupied by 
an overturned spin. The series expansion for P is obtained by weighting the Boltzmann 
factors for the free energy by the number of overturned spins in each case. Explicitly we 
find on the plane triangular lattice 

P ( u ,  p )  = p ~ u ~ + p ~ ( 6 ~ ~ - 7 ~ ~ ) + p ~ ( 6 ~ ~ + 2 7 ~ ~ - 9 0 ~ ~ +  58u9)+*  * * + p ' ~ L , ( u ) - t .  . . . 
(2.4) 

The weighting by number of overturned spins corresponds formally to a differentia- 
tion with respect to the field variable ( p )  and the expansion (2.4) is readily obtained in 
the above p-grouped form as far as the corresponding high-field polynomials L, are 
known for any lattice. Alternatively the expansion can be re-grouped in powers of U as 
far as the corresponding low temperature polynomials $s are known. (For information 
on the availability of these polynomials see I*, III*-VI*, VIII* and IX*.) 

We adopt the usual definition of mean size as the mean number of overturned spins 
connected to any overturned spin. To calculate the mean size, S(u, p ) ,  of finite clusters 
of perturbed spins the expectation of each configuration that contributes to the free 
energy expansion must be further weighted by the size of each of its connected 
components and the resultant second moment normalized in the usual way to corres- 
pond to the mean size of clusters per perturbed spin. Following I, § 2 and 111, § 1 we 
obtain the appropriate generalization of equation (1.11) of I11 in the form 

(2 .5)  S ( U ,  p )  = S*b, P ) l P ( U ,  p ) .  

The second moment S* does not correspond to a further differentiation with respect to 
p since in the Ising model the connectivity of clusters of perturbed spins is not recorded 
by the variables p and U. In general any term psuf corresponds to a set of distinct 
configurations with different numbers of connected components of size a, b, c, . . . , each 
of which has a weight a 2 + b 2 + c 2  . . . and the most direct method of determining the 
total contribution to S* is to go back to the underlying configurational data. In this way 
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we find in our specific example for the triangular lattice: 

S* = pu3  + p'(12u5 - 7u6) +p3(18u6+ 81u7 - 150u8+ 5 8 ~ ' )  + . . . . (2.6) 

The elimination of the field variable p between (2.4), (2.5) and (2.6) yields an expansion 
for the mean size in powers of the concentration with coefficients that are functions of 
the temperature variable U. Explicitly, writing for convenience p = l/u, we find for the 
triangular lattice 

S =  1 + 6 p p + ( 1 2 p 3 - 1 8 p 2 + 2 4 p ) p 2 + .  . . . (2.7) 

As the interaction tends to zero, p + 1, and p may be identified with the probability, p, 
of the primary species in a random mixture. In the limit we recover the result for the 
non-interacting system (see I): 

S =  1+6p+18p2+. . . . (2.8) 

In the limiting case of the zero-field Ising model (2.7) reduces, on substitution of the 
expansion for p, to a development in U only; it is convenient then to derive the 
expansion directly from the limiting forms of (2.4) and (2.6). 

For the zero-field case we have made a detailed study of the configurational data and 
derived expansions for the triangular lattice through U 17, the simple quadratic lattice 
through U lo ,  the honeycomb lattice through z l4 (2' = U )  and for the face-centred cubic 
lattice through u3'. 

Since we have based our numerical extrapolations on the function S* we only quote 
the data in this form. 

Triangular lattice 

S * ( u ) = u 3 + 1 2 u 5 + 1 1 u 6 + 1 2 9 u 7 + 1 9 2 u 8 + 1  360uy+2490u'0 

+ 14 091u" +28 895u "+ 143 7 0 6 ~ ' ~  + 316 4 3 1 ~  l4 

+ 1 445 7 6 1 ~ ' ~  + 3  342 624u 1 6 +  14 380 794u 17+. . . 

Simple quadratic lattice 

S*(u) = u 2  + 8u3 + 65u4 + 4 8 0 ~ '  + 3 381 u 6  + 23 O2Ou 

+153 171u8+1 002 180uy+6473 281ul0+. . . (2.10) 

Honeycomb lattice 

S * ( ~ ) = z ~ + 6 ~ ~ + 2 7 ~ ~ + 1 2 6 ~ ~ + 5 5 2 ~ ~ + 2  370z8+9 998z9+41 5 8 3 ~ "  

+ 1 7 0 9 9 7 ~ " + 6 9 6 5 5 8 ~ ' ~ + 2 8 1 5 7 5 5 ~ ' ~ + 1 1  3O9301zl4+. . . (2.11) 

Face-centred cubic lattice 

S*(u)  = u6+ 2 4 ~ "  - 1 3 ~ ' ' + 7 2 u ' ~ +  3 7 8 ~  16- 6 0 0 ~  " + 2 4 3 ~  I s +  3 8 4 ~  l9 

+ 1 968uZ0+3 216u2'-14 718u2'+ 16 332uZ3+7 9O7uz4+26 6 4 0 ~ ' ~  

- 13 935uZ6-235 744uZ7+549 5 3 4 ~ ' ~ -  121 320uZ9+ 174 3 7 8 ~ ~ '  

- 1 0 7 1 4 0 8 ~ ~ ~ - 1 9 9 4 7 8 4 ~ ~ ' + . . . .  (2.12) 
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3. Series analysis 

In this section we outline the series analysis for one two-dimensional lattice, the 
triangular, and for the face-centred cubic lattice in three dimensions. As the ratio and 
Pad6 approximant techniques that we have used are standard (Gaunt and Guttmann 
1974), we merely summarize the main results of our analysis. 

For the triangular lattice, we first calculate the Dlog Pad6 approximants to the series 
for S ( u )  and u - ~ S * ( U ) .  The rate of convergence in the vicinity of the physical 
singularity is found to be considerably more rapid in the latter case. Presumably 
dividing S*(u)  by the singular but non-divergent function p(u),as in (2.5),  means that 
S(u)  has a more complicated analytic structure. Speaking loosely, we may say that 
S* (u )  appears to be the more ‘natural’ function. Accordingly we omit our analysis of 
S ( u )  and simply give in table 1 our results for S * ( U ) .  These indicate very strongly a 
singularity at the Ising critical point u = U, = 4 of the form 

S* (u )=  C ( U c - U ) - e  (U + Uc-). (3.1) 

Table 1. Dlog PadC estimates of U, (and 0) derived from L 3 S * ( u )  for the triangular lattice. 

n 

2 
3 
4 
5 
6 
7 

- [n - l/nl 

0.28325 (-1.1956) 
0.34118 (-2.2470) 
0.34286 (-2.3030)$ 
0.33290 (-1.8849) 
0.33284 (-1.8823)$ 
0.333304 (-1.9087) 

[nlnl [ n  + l/nl 

0.32659 (-1.8632) 0.33792 (-2.1355) 
0.34871 (-2.5794) 0.34111 (-2.2300) 
0.33750 (-2.0914) 0.32983 (-1.7 124) 
0.33262 (-1.8701) 0.33454 (-1.9859) 
0.333248 (-1.9051) 0.333296 (-1.9081) 

t Defect on negative axis. 

Such a conclusion is not inconsistent with our general expectation that the introduction 
of interactions should reduce or at least not increase the non-interacting value p c ,  that is 

P c  P c  = ; (3.2) 
for the triangular lattice. If the equality holds then Pc = i, Z = 0 and hence U =U, as we 
have found. 

The corresponding exponent 8 may be estimated either from a pole-residue plot of 
the data in table 1 or, as in table 2, by evaluating at U = f the PadC approximants to the 

Table 2. Pad6 estimates of @ from ( U = -  u)(d/du) In(S*/u3) using U ,  = 5. 

n [n - 1/nI [ d n l  + l/nl 

2 2.1543 2.0269 2.0052 
3 1.9681 2.1099t 1.9478 
4 1.8374 1.9052 1.9075 
5 1.9077 1.9011t 1.9101 
6 1.9105 1.9106 1.9109 
7 1.9089t 

t Defect on positive axis. 
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series for (uc- u)(d/du) ln(S*/u3). Using these methods we conclude that 

e =  i.91*0.01. (3.3) 
The Dlog Pad6 approximants also indicate the presence of a non-physical singular- 

ity at U = -U, where s * ( ~ )  diverges with an exponent of about :. This singularity causes 
a characteristic odd-even oscillation in the ratios of coefficients. Procedures for dealing 
with this kind of situation within the ratio method are described by Gaunt and 
Guttmann. Again we suppress all details since the results, while not inconsistent with 
the Pad6 approximant results, contribute nothing new. 

Series analysis for the face-centred cubic lattice is complicated by the fact that the 
physical singularity lies outside the circle of convergence. Indeed according to the Dlog 
Pad6 approximants to u - ~ S * ( U ) ,  there appear to be at least three complex conjugate 
pairs of singularities within the physical disc. This situation is well known for low 
temperature Ising series (Guttmann 1969, Domb and Guttmann 1970, Domb 1974) 
and has for example prevented an effective analysis of the extensive low temperature 
susceptibility series that are available (Gaunt and Sykes 1973). Accordingly our results 
in three dimensions are only tentative. 

In table 3 we give estimates of the physical singularity and corresponding exponent 
as derived from Dlog Pad6 approximants to C 6 S * ( u ) .  Again we work with S* (u ) ,  
although in three dimensions it appears to have little if any advantage over S(u) ,  since 
presumably the analytic structure is very complicated in either case. 

For the face-centred cubic lattice, the condition (3.2) becomes (Sykes etal 1976d) 

p c ~ p c  = 0.198, (3.4) 

which implies that the physical singularity should occur at some temperature T* below 
the Ising critical temperature; that is, 

U* = exp(-4J/kr*) < uc= 0.66473 (3.5) 

for the face-centred cubic lattice (Sykes etal 1972). Indeed the condition (3.4) enables 
one to estimate an upper bound for U* by using the asymptotic form 

z = 1 - 2p = B ( 1 - p6 ( t  = (3.6) 

Tqble 3. Dlog Pad6 estimates of U* (and e) derived from C 6 S * ( u )  for the face-centred 
cubic lattice. 

n [n- l /n]  [nlnl [n + 1/nI 

5 0.58333 (-1.2561) 0,61354 (--1.6832) 0.63032 (-2.0109) 
6 0,65096 (-2.6665) 0.62568 (-1.9054) 0.62929 (-1*9887)$ 

8 -  0.64162 (-2.2722) 0.65119 (-2.6351)$ 
9 0.66243 (-3.2782) 0.66440 (-3.4254) 0.65904 (-3.0382) 

10 0.66277 (-3.3019)t 0.65632 (-2.8616) 0.65970 (-3.0794)t 
11 0.66833 (-3.6917)t 0.69443 (-6.6824)t 0.64938 (-2.4941) 
12 0.66299 (-3.3343)s 0.63912 (-1.9400) 0.60483 (-0.5063) 
13 0.62636 (-1.2984) 

7 0.63545 (-2.1629)$ 0.60797 (-1.6601)t 0'65789 (-2.9316) 

t Defect on positive axis. 
t Defect on negative axis. 
8 Defect in complex plane. 
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where the amplitude B = 1.487 (Domb 1974). We find 

U* c 0.650. (3.7) 

We note that of the estimates in table 3 without defects, all four for n 3 11 satisfy (3.7). 
This observation is rather suggestive since if the same analysis is performed (unpub- 
lished work) with the low temperature Ising susceptibility series none of the estimates 
satisfy (3.7). 

Without further information it does not seem possible to draw more precise 
conclusions. It is likely however that the inequality holds in (3.7) since otherwise 8 = 25 
as can be seen from a pole-residue plot of the estimates in table 3. We have seen that in 
two dimensions 8 exceeds y’ by about 9% while at the critical dimension it is known 
(Coniglio 1975) that 8 = y’ = 1. Hence in three dimensions we might expect 8 to exceed 
y’ (= 1.25) by between 0 and 9’7’0, 

1 - 2 5 c e s  1.36. (3.8) 

From the pole-residue plot, we then obtain 

0.625 C U* S0.628 (3.9) 

which corresponds according to (3.6) to 

0 * 0 9 2 ~ / ? , ~ 0 * 1 0 2 .  (3.10) 

4. Conclusions 

We have derived and analysed series expansions for the mean size of clusters in the king 
model. For the triangular lattice, the low temperature zero-field series seem to have a 
singularity located at the Ising critical point U = U, as suggested by Coniglio (1975) and 
Essam (1973). Our best estimate of the corresponding exponent 8 = 1.91 *0*01 is 
close to 1g (= 1.91666.. .) and we adopt this simple fraction as a convenient 
mnemonic. The confidence limits on our estimate, while not rigorous, do seem to 
exclude the possibility that 8 = y’, the low temperature susceptibility exponent. 
Analysis of the rather shorter series (2.10) and (2.11) for the square and honeycomb 
lattices indicates that the above results are generally valid in two dimensions. Such a 
conclusion is not inconsistent with arguments like those based on (3.2) since for these 
lattices p c  > $ (see 11). 

In three dimensions p , < $  for all the usual lattices (Sykes et a1 1976d) so that an 
argument similar to that in (3.4) leads us to expect a singularity at U* < U,. We have 
found some evidence for this in the case of the face-centred cubic lattice, but in common 
with other low temperature series for the three-dimensional Ising model convergence is 
very slow. More precise results will have to await theoretical developments or longer 
series. 
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